Mobile QR Code QR CODE

2024

Acceptance Ratio

21%

References

1 
Krizhevsky A., Sutskever I., Hinton G. E., 2012, ImageNet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems, Vol. 25, pp. 1097-1105Google Search
2 
Lin S., Ji R., Yan C., Zhang B., Cao L., Huang F., Doermann D., 2019, Towards optimal structured CNN pruning via generative adversarial learning, Proc. of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2790-2799DOI
3 
Simonyan K., Zisserman A., 2015, Very deep convolutional networks for large-scale image recognition, Proceedings of the International Conference on Learning RepresentationsDOI
4 
Umuroglu Y., 2017, FINN: A framework for fast, scalable binarized neural network inference, Proc. of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 65-74DOI
5 
Zhang , 2015, Optimizing FPGA-based accelerator design for deep convolutional neural networks, Proc. of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 161-170DOI
6 
Banner R., Courbariaux M., Soudry D., El-Yaniv R., Bengio Y., 2016, Binarized neural networks, Advances in Neural Information Processing Systems, pp. 4107-4115Google Search
7 
Courbariaux M., Bengio Y., David J.-P., 2015, BinaryConnect: Training deep neural networks with binary weights during propagation, Advances in Neural Information Processing Systems, pp. 3123-3131DOI
8 
Martínez B., Yang J., A. Bulat , G. Tzimiropoulos , 2020, Training binary neural networks with real-to-binary convolutions, Proc. of the Conference on NeurIPS, pp. 1-11DOI
9 
Rastegari M., Ordonez V., Redmon J., Farhadi A., 2021, XNOR-Net: ImageNet classification using binary convolutional neural networks, Proceedings of the European Conference on Computer Vision, pp. 1-16DOI
10 
Nuyen X. T., Nguyen T. N., Lee H.-J., Kim H., 2020, An accurate weight binarization scheme for CNN object detectors with two scaling factors, IEIE Transactions on Smart Processing & Computing, Vol. 9, No. 6, pp. 497-503DOI
11 
Bethge J., 2021, Rethinking the value of binary neural networks, Proceedings of the International Conference on Learning RepresentationsGoogle Search
12 
Qiu J., 2021, AdderNet: Do we really need multiplications in deep learning?, Proc. of the 2021 IEEE/CVF WACV, pp. 2060-2069Google Search
13 
Umuroglu Y., Fraser N.J., Gambardella G., Blott M., Leong P., Jahre M., Vissers K., 2017, FINN: A framework for fast, scalable binarized neural network inference, Proc. of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Array, pp. 65-74DOI
14 
Ding , 2020, Towards accurate and high-performance binary neural networks on FPGA, Proceedings of the 28th ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 331-340Google Search
15 
Kim H., Kim K., Kim J., Kim J.-J., 2020, BinaryDuo: Reducing Gradient Mismatch in Binary Activation Network by Coupling Binary Activations, Proc. of the 2020 Conference on NeurIPS, pp. 1-12DOI
16 
Lin S., Ji R., Yan C., Zhang B., Cao L., Ye Q., Huang F., Doermann D., 2018, Towards optimal structured CNN pruning via generative adversarial learning, Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2790-2799DOI
17 
45 nm Open Cell Library, Available at http://www.nangate.com/.URL
18 
Lee J., Kim H., Kim B.-S., Jeon S., Lee J. C., Kim D. S., 2022, Implementing binarized neural network processor on FPGA-based platform, Proc. of IEEE 4th International Conference on AICAS, pp. 469-471DOI