Mobile QR Code QR CODE

2024

Acceptance Ratio

21%

References

1 
Chen X., Qin J., 2021, Regularized Kaczmarz algorithms for tensor recovery, SIAM Journal on Imaging Sciences, Vol. 14, No. 4, pp. 1439-1471DOI
2 
Miao J., Kou K. I., 2021, Color image recovery using low-rank quaternion matrix completion algorithm, IEEE Transactions on Image Processing, Vol. 31, No. 1, pp. 190-201DOI
3 
Zhang X., Lu H., Guo D., Lai Z., Ye H., Peng X., 2022, Accelerated MRI reconstruction with separable and enhanced low-rank Hankel regularization, IEEE Transactions on Medical Imaging, Vol. 41, No. 9, pp. 2486-2498DOI
4 
Yu K., Wang X., Dong C., Tang X., Loy C. C., 2021, Path-restore: Learning network path selection for image restoration, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 44, No. 10, pp. 7078-7092DOI
5 
Yedder H. B., Cardoen B., Hamarneh G., 2021, Deep learning for biomedical image reconstruction: A survey, Artificial Intelligence Review, Vol. 54, No. 1, pp. 215-251DOI
6 
Tao T., Qian Y., Pan S., 2022, Column l2,0-norm regularized factorization model of low-rank matrix recovery and its computation, SIAM Journal on Optimization, Vol. 32, No. 2, pp. 959-988DOI
7 
Hu Z., Nie F., Wang R., Li X., 2021, Low rank regularization: A review, Neural Networks, Vol. 136, No. 1, pp. 218-232DOI
8 
Charisopoulos V., Chen Y., Davis D., Díaz M., Ding L., Drusvyatskiy D., 2021, Low-rank matrix recovery with composite optimization: Good conditioning and rapid convergence, Foundations of Computational Mathematics, Vol. 21, No. 6, pp. 1505-1593DOI
9 
Bauch J., Nadler B., Zilber P., 2021, Rank 2r iterative least squares: Efficient recovery of ill-conditioned low rank matrices from few entries, SIAM Journal on Mathematics of Data Science, Vol. 3, No. 1, pp. 439-465DOI
10 
Zilber P., Nadler B., 2022, GNMR: A provable one-line algorithm for low rank matrix recovery, SIAM Journal on Mathematics of Data Science, Vol. 4, No. 2, pp. 909-934DOI
11 
Me Y., Fan Y., Zhang Y., Yu J., Zhou Y., Liu D., Shi H., 2023, Pyramid attention network for image restoration, International Journal of Computer Vision, Vol. 131, No. 12, pp. 3207-3225DOI
12 
Rasti B., Chang Y., Dalsasso E., Denis L., Ghamisi P., 2021, Image restoration for remote sensing: Overview and toolbox, IEEE Geoscience and Remote Sensing Magazine, Vol. 10, No. 2, pp. 201-230DOI
13 
Jiu M., Pustelnik N., 2021, A deep primal-dual proximal network for image restoration, IEEE Journal of Selected Topics in Signal Processing, Vol. 15, No. 2, pp. 190-203DOI
14 
Zhang K., Li Y., Wuo W., Zhang L., Gool L. V., Timofte R., 2021, Plug-and-play image restoration with deep denoiser prior, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 44, No. 10, pp. 6360-6376DOI
15 
Zha Z., Wen B., Yuan X., Zhou J., Zhu C., Kot A. C., 2021, A hybrid structural sparsification error model for image restoration, IEEE Transactions on Neural Networks and Learning Systems, Vol. 33, No. 9, pp. 4451-4465DOI
16 
Wang H., Li W., Hu L., Zhang C., He Q., 2022, Structural smoothness low-rank matrix recovery via outlier estimation for image denoising, Multimedia Systems, Vol. 28, No. 1, pp. 241-255DOI
17 
Pokala P. K., Hemadri R. V., Seelamantula C. S., 2021, Iteratively reweighted minimax-concave penalty minimization for accurate low-rank plus sparse matrix decomposition, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 44, No. 12, pp. 8992-9010DOI
18 
Sharma P., Bisht I., Sur A., 2023, Wavelength-based attributed deep neural network for underwater image restoration, ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 19, No. 1, pp. 1-23DOI
19 
Tong T., Ma C., Chi Y., 2021, Accelerating ill-conditioned low-rank matrix estimation via scaled gradient descent, The Journal of Machine Learning Research, Vol. 22, No. 1, pp. 6639-6701DOI
20 
Choudhuri S., Adeniye S., Sen A., 2023, Distribution alignment using complement entropy objective and adaptive consensus-based label refinement for partial domain adaptation, Artificial Intelligence and Applications, Vol. 1, No. 1, pp. 43-51DOI